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Abstract

Software simulation tools for vehicle fuel economy/energy efficiency
can play an important role in strategic decisions about advanced
powertrains. One such tool that has been developed by the National
Renewable Energy Laboratory (NREL) is known as FASTSim. The
philosophy of FASTSim aims to strike a difficult balance between
simplifying the task of creating/editing vehicle models, fast
computation time and high-fidelity simulation results. In the
“baseline” version of FASTSim, which is open-source and freely
available in Python or Excel, the instantaneous efficiency of an
engine, motor or fuel cell is estimated via reference curves as
function of power demand. The reference efficiency curve for each
powertrain subsystem (e.g. for a spark-ignition engine) in baseline
FASTSim has the same profile irrespective of what vehicle is being

modelled, which is a compromise in accuracy in favor of ease of %.\

modeling. This paper utilizes an open-source Java implementation
FASTSim with capability for custom efficiency curves for engi (&
motor, along with a large dataset of real-world vehicle trips tc@
calibrate and validate FASTSim vehicle models for three Ratte
Electric Vehicles (BEVs), four Plug-in Hybrid Electric Vi
(PHEVSs), one non-plug-in Hybrid Electric Vehicle (
conventional internal combustion engine (ICE) vebi
goal in vehicle modeling, is for the simulation %
match the real-world trip data for every trip, b;ﬁ& a
difficult due to many uncertainties in real-
show that it is possible to achieve hi i@ for an aggregate of
several trips, and the modeling fid oves with less uncertainty
in trips information, such as when roag slope and cabin
heating/cooling loads are known.

S
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Introduction

A wide variety of approaches and software tools exist for modeling
of vehicle fuel economy/energy efficiency. From a categorical [1]
standpoint, it may be useful to distinguish between approaches that
attempt to model and replicate the performance of individual
powertrain components, also referred to as physics-based approaches
(or “White box” in [1]), empirical approaches that are primarily data-
inference based (referred to as “Black box” in [1]), and hybrid
approaches or “Gray box” [1], which attempt to combine traits of
both physics-based and data inference approaches. Black-box models
have the advantage in being grounded to real-world data when
estimating average vehicle performance across many owners,
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however, such models may be less accurate when considering
unconventional cases that are off the typical norm. Moreover, real-
world data for calibration of N}wodels often lags by up to a few
years. A simple and co ly uSed example black-box model is the
US Environmental P ti gency (EPA) fuel economy labels [2],
where the fuel eco ehicle can be one of three numbers
corresponding tof‘ct e driving, “highway”-like driving or
“combined”. Other -box type models in utilization by US
government agencies include MOVES [3] and EMFAC [4]. Among
several phyicsydased models for vehicle fuel economy simulation,
two of e endorsed by the US Department of Energy [5];

6] and FASTSim [7], both of which have been utilized in
@iewed work in the literature [8-13]. Furthermore, both
Autdfio

mie and FASTSim have been utilized in studies/reports that

\'%m to gauge/shape the future of transportation in the US [14-16].

ith such an important topic in discussion, it is beneficial to
continuously conduct assessments and validation of the fuel economy
simulation models.

As a general rule of thumb in physics-based models, higher degree of
detail in modeling the powertrain components and vehicle generally
leads to better accuracy in the simulation results, but that usually
comes at the expense of higher computational resources requirement
[17]. To the authors’ understanding, the development FASTSim
philosophy had been to aim for a good trade-off between fast
computations that are still capable of providing reasonable accuracy
[13], a modeling strategy that is very beneficial for studies that
involve the simulation of a large number of trips, such as some of the
authors’ past work [18, 19]. More recently, FASTSim has become a
key component in a partnership between the National Renewable
Energy Laboratory (NREL) and Google, which aims at developing
Eco-friendly routing for Google Maps [20]. Previous work by the
authors in [21] had attempted a hybrid (or “gray box™) calibration
approach for FASTSim by introducing three additional tuning
parameters that present correction terms to traction power, vehicle
mass and auxiliary power, with the ultimate goal of reducing the
difference in simulation results compared to a dataset of real-world
trip data. And although the approach in [21] successfully improved
the fidelity of FASTSim models compared to “baseline” FASTSim
for select test cases, it seemed like the tuning setup in [21] was trying
to accomplish two things at once; i) accounting for unknown
variations in real-world trips (such as number of passengers, cargo
load, wind speed and direction), and ii) accounting for modeling
idealizations of the powertrain. This paper presents an extension of
the previous work in [21] by incorporating some additional detail of



the powertrain components, akin to some of the more detailed
versions of FASTSim (per discussions with NREL researchers).
Furthermore, since some of the tuning parameters are tied to the type
of information available (or not) in the real-world trips data, proper
setting of the tuning parameters is dependent on such information.
For example, tuning a FASTSim vehicle model so that the simulated
energy consumption for a trip matches the real-world dictates
different values for the auxiliary power correction term, depending on
whether (or not) the heating ventilation and air conditioning (HVAC)
power information is incorporated within the FASTSim simulation.
Such dependency on real-world trip information availability is also
explored in this work.

This paper started with a motivation and brief review of relevant
work in the literature. The rest of the manuscript is organized as
follows: next section provides an overview of the extended
calibration approach for FASTSim, which involves two parts: i)
physics-based model, and ii) calibration for real-world trips. The
section that follows showcases results of the first part (physics-based
model tuning), with subsequent sections showing an overview of
real-world trips and utilizing them for calibration. The paper then
concludes with a summary and brief discussion of future work.

Approach Overview

In “baseline” FASTSim [7], powertrain components such as the
engine and motor have one-dimensional efficiency curves with a pre-
set profile that relates the instantaneous efficiency of the engine or
motor to its relative power input/output, with the relative power being
the ratio between instantaneous power and the maximum rated
power. In other words, a user of baseline FASTSim conducting
modeling work, may adjust the maximum power of the engine or
motor, but they do not control the profile of the efficiency curve,

engine (Spark ignition, Atkins, Diesel, ...etc.) or maximum power
the motor (smaller motors have efficiency curves scaled dow
compared to the default curve utilized in baseline FASTSim).
setup of baseline FASTSim is mainly intended for ease ogte by e

which is automatically selected by FASTSim based on type of the %\

general public, yet more advanced users may wish to mo e
efficiency curves and/or utilize two-dimensional torg

efficiency maps. The work in the current paper‘ut' va
implementation of FASTSim (following closel e flow of
Excel and python version of baseline FASTSI that has been
contributed and open-sourced by the auth . The Java-

implementation adheres to the defa T y curves of baseline
FASTSim, but also permits user i ification of (i.e. use of

“custom” curves for) the efficiency clves for engine and motor.

Overview of the overall scheme for calibration and verification of
FASTSim vehicle models is shown in Fig. 1. First stage of vehicle
model calibration (bounded by a red rectangle in Fig. 1) is to adjust
the physical parameters (such as size and weight, tire coefficient,
maximum power of various components, battery storage capacity and
state of charge limits, ...etc.) as well as the efficiency curves of
engine and/or motor. The goal for adjusting the physics-based model
is to match (within reasonable error limits) the observed performance
of the vehicle under the controlled conditions of dynamometer tests
that have known results from the EPA. This includes both road-load
dynamometer coefficients [23], as well as EPA label values [2].
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After generating reasonable physics-based models from first stage, a
ond stage (bounded by a blue rectangle in Fig. 1) begins. In the
second stage, FASTSim simulations of real-world trips, modified by
three tuning/calibration parameters (ar, am, an), are compared to the
known values for energy and/or fuel consumption of the real-world
trips, with values of the calibration parameters continuously adjusted

via an optimization process that aims to minimize the average error
between FASTSim simulations and the real-world trips. Interested
readers may refer to [21] for details about the reasoning and
derivation of the tuning parameters, but for convenience, a brief
summary of their effect is explained as follows:

or is ascaling factor (dimensionless) for the vehicle traction power.
A value of 1.0 for this parameter implies “no adjustment” which
is usually the favored case during the model calibration process,
though sometimes a value less/greater than (but still close to) 1.0
may be used

am is a correction term to the vehicle mass (in kg), mainly aimed to
account for things like unknown number of passengers or cargo
load in the real-world trips

oa is a correction term to auxiliary power (in kW), mainly aimed to
account for things like unknown HVAC power

After generating real-world-calibrated FASTSim vehicle models via
the second stage, the models are checked via another set of real-world
trips (which we refer to as “Verification trips”) that have not been
included in the process of optimizing the values of (ar, am, aa).
Results for the verification trips are regarded as the metric for
performance.



Physics-Based Model of Vehicles

Nine vehicle models are considered in this work including three
BEVs (Bolt, Leaf, Model S), four PHEVs (C-Max Energi, Pacifica
Hybrid, Prius Prime, Volt), one HEV (Prius) and one conventional
ICE (CR-V). Results of the first stage of the vehicle models tuning
(red rectangle in Fig. 1) are shown in Table 1 and Table 2. Custom
efficiency curves for engine and motor to achieve those results are
shown in Fig. 2, with full listing of the vehicle modeling parameters
provided in a publicly accessible shared storage at [24]. In current
work, we set a target of £10% error margin for vehicle mass and
equivalent dynamometer coefficients in the FASTSim model
compared to EPA test values [23], which was successfully achieved
for all the considered vehicle models in Table 1. Likewise, we also
set a target of £10% error margin for FASTSim simulation of the
vehicle models’ equivalent EPA label values, compared to the
standard catalogue label value [2], and this was also successfully
achieved, as observed in Table 2. We note that the custom efficiency
curves (Fig. 2) and vehicle physical parameter settings via this
process [24] may not necessarily be the only, nor necessarily the best
settings to arrive at such result. However, with the first stage being a
precursor to calibrating the vehicle models versus real-world trips
(main focus of this work), we consider these results of the first stage
sufficient.

Real-World Driving Data

Real-world trips data (anonymized to include only speed, road slope,
HVAC power, energy and fuel consumption) in this study were
obtained from the eVMT survey [25]. While only a subset of the
eVMT survey dataset, the analyzed trip data comes several 3-10
vehicle owners for each of the considered vehicle models, with the
total number of trips per vehicle model constituting at least several
hundred, as shown in Fig. 3. Trips from each vehicle model in the
analyzed data were split via a randomized procedure into a set g
tuning trips (approx. 85% of trips) that will be used for calibr
(ar, am, aa) values, and a set of verification trips (approxils% \

trips). Aside from showing the split between tuning and vgi¥ication
trips, a main purpose of Fig. 3 is to show the variation
fuel consumption (as recorded via OBD logging in th
data) across different owners of same vehicle mo
different trips by the same owner. This vari
plots in Fig. 3 for the electric energy |ntensm%
BEVs, and gasoline intensity (in gal/ ile

ICE. For PHEVS, whose trips may,
gasoline consumption, we converte ounts to equivalent
electric energy at a conversion rate corPesponding to the EPA
combined cycle rating [2] kWh/mile and MPG values.

h/mile) for
V and conventional
h electric energy and

e

In the box plots of Fig. 3, the bottom and top limits of the box
respectively represent the 25™ and 75™ percentiles, while the
horizontal line within the box represents the median value (50"
percentile). The extension lines respectively represent the 51 and 951
percentiles, while the diamond shape marks the non-outlier average
value (average of the values between the 51" and 95" percentiles).
Also marked in Fig. 3 (via dotted line) is EPA combined cycle label.
We observe that individual trips, or the average for individual vehicle
owners may deviate a lot from the EPA rating, but the average for a
large number of trips by different owners (diamond shape in the
darker tone box-plots in Fig. 3) remains within £15% from the EPA
combined cycle rating. Though in comparison, tuned FASTSim
models in [21] (without custom curves) achieved £4% error margin.
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Table 1. Error margins in vehicle mass and dynamometer coefficients in
vehicle models

. Relative Error [%] for
Vehicle -
Model Vehicle Dyno Dyno
Mass Coeff A | CoeffC
Bolt +8.8% -8.6% -7.9%
Leaf +7.3% -2.5% +0.2%
Model S +0.1% -2.2% +8.8%
C-Max +4.9% -6.2% +9.6%
Pacifica +8.5% -2.2% -4.5%
Prius Prime +6.9% -4.2% +2.2%
Volt +9.4% +8.1% +2.6%
Prius +8.3% +6.4% -9.6%
CR-V +9.5% +7.9% +1.2%

Table 2. Error margins for standard dynamometer drive cycles simulations of
the vehicle models compared to EPA label values

Relative Error [%] in
Vehicle Electric Intensity Fuel Economy
Model (KWh/mil MPG) for
City iy omb City Hwy Comb

Bolt +9.5% | ¥5.8% | +8.7%
Leaf +5.3% | +3.9%
Model S +200% W+94% | +7.5%
C-Max M -6.5% | -7.9% | +6.5% | -1.3%
Pacifica +0.4% | -9.3% | +9.0% | -2.6%
Prius Primgss +6.5% | -4.5% | +9.9% | +2.0%
volt [0 -3.0% | -9.6% | -0.3% | -6.6%
Prius 0y -8.8% | +8.9% | +0.1%

- -9.9% | +4.9% | -3.2%
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Figure 2. Custom efficiency curves for vehicle models.



(i) CR-V

(h) Prius HEV

(g) Volt

—L ﬁwm ‘29T) OTH#
mmm (65 ‘zs¢€) 68
@ (z1 “18) 84 @ (8€ ‘zs7) g
Dﬂ__ﬂ i (6 ‘05) L# Ruan_ (or‘osz) e w
— T (6 ‘8v) o# = == (es ‘es€) oft E
o — g _HM.IlmwM_I & . S (te‘T1e) €4
BHUD (61 ‘0z1)S# O Ty |(eresisw v o )
—- = a— 2 s e (sT'0) 2
@ (6168 v — — (vros) bt & i )
.. L R — WNMHT.@U (o€ “z6T) TH#
—r (01 ‘ss) €4 = (9z/6T) €8 = — ,
; 8T ‘07T) TH : v9 ‘ecv) T# —
— —
e (cz ‘evr) T# y : (€S ‘e9¢) T# s 5 5 B e o W m ) m
v ‘I_Haﬂ_ . (81T ‘s04) IV ya il ;H[I A (T6€ “€75T) IV T Ly *nm mmm g Mm 282
(/7 \ Z o2 06 g:-8t| sglLg5e.,
A 4 [ e mmdm W.C 0.9 [SIrT)
2w (ous § 3w 38 =°%3| 8% 58
1= 4 = C wmye T 9 L g o bo
b * c.= T OO L= Eel Q.= O ¢
£E X 25 2y £eif| 83 ET E'E
=) a e T =] >
—C 52| (1z'9sT) 0 woorE 0> $g88 ef 23272
== S = |t [0 [ S=82 &
.1 £ B | oz ‘0ot Lt 5 |- * ¥n <—4 \
—L{ IO} ¢35 ‘ — . >
e mm (8T ‘SET) 9% ,w Oy Q - (LL'9¢v) off T o (67 25) £
- =90 ross | (szge)sf O e )
i =u|(grolo 2 e At onps  Q @ .
—2 : px > —dl; (e ‘ece) T#
ot (L7 ‘062) €4 e e 9l e — o .
— g — ‘<) o : w& KD = (L2 'ssv) I
O (¢ "sv) z# — (e a 3 o S =
&uimwm (6T ‘c8) T# o (sc oS c 1=} c c
— ‘ — ‘ a|lw/|ed] Ayisuaiu| aujjose
- - (29T ‘256) IV o — 1 (744 Hqigo}ﬁ [lw/|e8] Ayisuaju| suljosen
i (€9 ‘6v€) OTH# % — (6 ‘6v) OT#
— s . i y
o (ott ‘0ts) 68 (¥1 ‘90T) 6#
== (€5 ‘20¢) g4 T (59 ‘z6€) 8# (c€ "sse) g
— 1 ‘ o 3— ‘ ‘&n ‘
e (85 ‘09¢) L# 3l (£5°sce) L < (21 ‘TOT) L#
Sl (9€ ‘691) 94 = S (00T ‘v99) 9 S (ot ‘65) 94
me }— ‘ — “_J ‘ > ‘
Tn (87 ‘vST) G \Dm, Can (vz ‘997%) St W (TT '99) s#
— —K ‘ © —O T~ ‘ ‘
~ e (0z ‘se) vt = — (ev'soci o (8T ‘99) v#
—O . : ‘ ‘
s (€s ‘ese) €4 - —— 1 (60T ‘509) € = (b “L6T) €8
 — (ov ‘681) 7# TS (eg'esoles (ve‘L12) 2
= (LS '8z€) TH o (09 ‘cor) T# (81 '88) T#
— T . —_— ‘ : .
S — (st€ ‘0S6T) IV i — = (692 ‘g€8Y) IV —= g (z1zc01T) IV
0 < ™ o - 2 = o o - 2 = o o - =
o o o o o o o o o o o o o o o o o P
S S <
[epw/ym] Avisualu) ASusug < [epw/ymy] Aususiul A3usug b3 < [apw/ypn] Ansusyul ABusug b3 =
> > >

Figure 3. Summary of real-world energy efficiency for vehicle models in current study.
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Results and Discussion

We first examine adjusting the three tuning parameters (o, am, aa)
with the objective of getting the average value for relative error in
trip energy consumption to be within £0.1% for the tuning set of trips
(this process corresponds to the blue rectangular boundary in Fig. 1).
In doing so, we use all the available information (speed, road slope
and HVAC power) of the real-world trips within the FASTSim
simulations. The corresponding (ar, am, aa) values are listed in
Table 3. Noting however that if the purpose of creating the tuned
FASTSim vehicle models is to conduct simulations for other real-
world trip datasets (ones that may not have fuel/energy, nor
slope/HVAC information) such as the travel datasets hosted at
NREL’s Transportation Secure Data Center (TSDC) [26], then
another set of (ar, am, an) values are needed in order to compensate
for the unavailable trip information. Those re-adjusted values are
listed in Table 4 and Table 5 for respectively datasets that include
slope but not HVAC power, and datasets that include neither slope
nor HVAC power. We note that the real-world data obtained for
Model S, Volt, Prius and CR-V did not include HVAC power, and
thus, the corresponding (ar, am, aa) values could not be generated in
Table 4. Error in trip energy FASTSim simulation in the tuning set of
trips are shown in Fig. 4.b for the appropriately set (ar, am, aa)
values. We also explore the effect of inappropriate setting of (ar, am,
ap) values in Fig. 4.a, if the tuning parameter values from Table 3
(and Table 4 for Model S, Volt, Prius and CR-V) were to be used for
FASTSim simulation of trips that did not include road slope and/or
HVAC information.

By examining the box plots in Fig. 4.a, one may gain some insights
into how real-world trip information interacts with fuel economy

ar, am, aa values) to provide the “correct answer” when road slope
and HVAC are provided to FASTSim (green tone box plots in Fig.
4.a), will generally underestimate trip energy (pink tone box plg n&
Fig. 4.a) if the simulation used only the trip speed, which wo w@
akin to driving on a perfectly flat terrain with no heating/zolm

simulations. In general, a FASTSim vehicle model that is tuned (via g\\‘ odel S 1.000 50 0.10

Comparing the average values (diamond marker) of gree
yellow tone box plots in Fig. 4.a implies that the error i

ergy

estimation due to missing HVAC power information een 2%
to 6%. Similarly, comparing the average values o tone and
pink tone box plots in Fig. 4.a implies that the trip energy

estimation due to missing road slope informasigl is’another 2% to
7%. When utilizing the proper tuning par; r values (Fig. 4.b), the
average relative error in FASTSIim latve#is for the tuning trips
was within £0.1% when road slope AC power are included in
the simulated trips data (green tone bo plots in Fig. 4.b), within
+0.4% when road slope is included but not HVAC power (yellow
tone box plots in Fig. 4.b), and within £1.2% when neither road slope
nor HVAC power are included (pink tone box plots in Fig. 4.b).

To check the capability of tuned FASTSim models for generalization
however, we examine their performance for the set of verification
trips, which were not included in the process of tuning the (ar, am,
an) values. The results of this are shown in Fig. 5. We observe that
the average relative error in trip energy remained within +1.5% when
road slope information is included (green and yellow tone box plots
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in Fig. 5), which is an improved result compared to £4% in previous
work [21], likely owing to modeling improvements via the custom
efficiency curves. We also observed that tuned models without road
slope nor HVAC power (not attempted in previous work) were able
to achieve average relative error within £4% (pink tone box plots in
Fig. 5). Furthermore, aside from the average value for relative error,
there is a fairly clear improvement in the fidelity of simulation results
in Fig. 5 (in terms of narrower band between 25" to 75™ percentile
and/or 5% to 95t percentiles) as one observes the pink, yellow and
green tone box plots for each of the vehicle models (with the
exception of Pacifica Hybrid, where they are mostly similar). This is
perceived to attest to the importance of including road slope and
HVAC power within simulations when such information is available.

Table 3. Tuning parameter values for real-world trips that include both slope
and HVAC power information

X,,ij};g,'e ar | amikgl | oalkw]
Bolt 1.000 40 0.00
Leaf 1.000 50 0.20
C-Max 0.965 N 0.00
Pacifica 1.000 100 0.20
Prius Prime 0.960 S\ 0 0.00

Table 4. Tuning par(akvalues for real-world trips that include slope but

not HVAC er igformation

V _N
VSO | o | avbal | antowg

It 1.000 150 0.30

Le 1.000 170 0.30

[ C-Max 0.970 0 0.00
Pacifica 1.000 260 0.70
Prius Prime 0.970 0 0.00
Volt 1.000 220 1.20
Prius 0.960 30 0.00
CR-V 1.000 150 0.50

Table 5. Tuning parameter values for real-world trips that do not include slope
or HVAC power information

\l\ilei)rz;gll ¢ ot am [kg] | aa[kW]
Bolt 1.000 100 0.50
Leaf 1.000 210 0.35
Model S 1.000 100 0.10
C-Max 0.980 45 0.00
Pacifica 1.000 475 0.90
Prius Prime 1.000 50 0.25
Volt 1.000 300 1.20
Prius 1.000 50 0.25
CR-V 1.000 350 0.70
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parameter tuning values corresponding to when slope and HVAC information is included, and (b) after re-adjusting the tuning to compensate for the excluded data.
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Conclusion & Future Work

This paper presented an extension of previous work that aimed at
improving the fidelity of energy efficiency/fuel economy simulation
results of FASTSim via a two-stage model tuning process, with the
first stage focusing on adjusting the physical parameters of vehi K
model (including custom efficiency curves for engine and m

and the second stage focusing on tuning of energy adjustment
parameters that aim to account for uncertainties in real-w driving.
Tuned FASTSim vehicle models were generated for ni duty
vehicles were generated including three BEVs, four P%s, one
HEV and one conventional ICE. Where feasiblg, ee variants
of the tuned models were generated depending her the
available information in the real-world trips simulated includes
only the vehicle speed, speed and road sI@;r Speed, road slope and
HVAC power. Verification test si @n 0 the tuned models
attained average relative error in trijy@nergy estimation within £1.5%
when road slope information is included, and within +4% when
neither road slope nor HVAC power information are included. Future
extensions of this work may include repeating the study on a larger
scale (more vehicle models, more vehicles and trips per vehicle
model), and/or consideration for automation procedures for optimal
tuning of the custom-curves and other tuning parameters.
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