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Abstract 

Software simulation tools for vehicle fuel economy/energy efficiency 

can play an important role in strategic decisions about advanced 

powertrains. One such tool that has been developed by the National 

Renewable Energy Laboratory (NREL) is known as FASTSim. The 

philosophy of FASTSim aims to strike a difficult balance between 

simplifying the task of creating/editing vehicle models, fast 

computation time and high-fidelity simulation results. In the 

“baseline” version of FASTSim, which is open-source and freely 

available in Python or Excel, the instantaneous efficiency of an 

engine, motor or fuel cell is estimated via reference curves as 

function of power demand. The reference efficiency curve for each 

powertrain subsystem (e.g. for a spark-ignition engine) in baseline 

FASTSim has the same profile irrespective of what vehicle is being 

modelled, which is a compromise in accuracy in favor of ease of 

modeling. This paper utilizes an open-source Java implementation of 

FASTSim with capability for custom efficiency curves for engine and 

motor, along with a large dataset of real-world vehicle trips to 

calibrate and validate FASTSim vehicle models for three Battery 

Electric Vehicles (BEVs), four Plug-in Hybrid Electric Vehicles 

(PHEVs), one non-plug-in Hybrid Electric Vehicle (HEV) and one 

conventional internal combustion engine (ICE) vehicle. An ultimate 

goal in vehicle modeling, is for the simulation results to closely 

match the real-world trip data for every trip, but such a goal is 

difficult due to many uncertainties in real-world trips. Instead, results 

show that it is possible to achieve high fidelity for an aggregate of 

several trips, and the modeling fidelity improves with less uncertainty 

in trips information, such as when road slope and cabin 

heating/cooling loads are known.  

Introduction 

A wide variety of approaches and software tools exist for modeling 

of vehicle fuel economy/energy efficiency. From a categorical [1] 

standpoint, it may be useful to distinguish between approaches that 

attempt to model and replicate the performance of individual 

powertrain components, also referred to as physics-based approaches 

(or ‘White box” in [1]), empirical approaches that are primarily data-

inference based (referred to as “Black box” in [1]), and hybrid 

approaches or “Gray box” [1], which attempt to combine traits of 

both physics-based and data inference approaches. Black-box models 

have the advantage in being grounded to real-world data when 

estimating average vehicle performance across many owners, 

however, such models may be less accurate when considering 

unconventional cases that are off the typical norm. Moreover, real-

world data for calibration of such models often lags by up to a few 

years. A simple and commonly used example black-box model is the 

US Environmental Protection Agency (EPA) fuel economy labels [2], 

where the fuel economy of a vehicle can be one of three numbers 

corresponding to “city”-like driving, “highway”-like driving or 

“combined”. Other black-box type models in utilization by US 

government agencies include MOVES [3] and EMFAC [4]. Among 

several physics-based models for vehicle fuel economy simulation, 

two of which are endorsed by the US Department of Energy [5]; 

Autonomie [6] and FASTSim [7], both of which have been utilized in 

peer-reviewed work in the literature [8-13]. Furthermore, both 

Autonomie and FASTSim have been utilized in studies/reports that 

aim to gauge/shape the future of transportation in the US [14-16]. 

With such an important topic in discussion, it is beneficial to 

continuously conduct assessments and validation of the fuel economy 

simulation models. 

As a general rule of thumb in physics-based models, higher degree of 

detail in modeling the powertrain components and vehicle generally 

leads to better accuracy in the simulation results, but that usually 

comes at the expense of higher computational resources requirement 

[17]. To the authors’ understanding, the development FASTSim 

philosophy had been to aim for a good trade-off between fast 

computations that are still capable of providing reasonable accuracy 

[13], a modeling strategy that is very beneficial for studies that 

involve the simulation of a large number of trips, such as some of the 

authors’ past work [18, 19]. More recently, FASTSim has become a 

key component in a partnership between the National Renewable 

Energy Laboratory (NREL) and Google, which aims at developing 

Eco-friendly routing for Google Maps [20]. Previous work by the 

authors in [21] had attempted a hybrid (or “gray box”) calibration 

approach for FASTSim by introducing three additional tuning 

parameters that present correction terms to traction power, vehicle 

mass and auxiliary power, with the ultimate goal of reducing the 

difference in simulation results compared to a dataset of real-world 

trip data. And although the approach in [21] successfully improved 

the fidelity of FASTSim models compared to “baseline” FASTSim 

for select test cases, it seemed like the tuning setup in [21] was trying 

to accomplish two things at once; i) accounting for unknown 

variations in real-world trips (such as number of passengers, cargo 

load, wind speed and direction), and ii) accounting for modeling 

idealizations of the powertrain. This paper presents an extension of 

the previous work in [21] by incorporating some additional detail of 
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the powertrain components, akin to some of the more detailed 

versions of FASTSim (per discussions with NREL researchers). 

Furthermore, since some of the tuning parameters are tied to the type 

of information available (or not) in the real-world trips data, proper 

setting of the tuning parameters is dependent on such information. 

For example, tuning a FASTSim vehicle model so that the simulated 

energy consumption for a trip matches the real-world dictates 

different values for the auxiliary power correction term, depending on 

whether (or not) the heating ventilation and air conditioning (HVAC) 

power information is incorporated within the FASTSim simulation. 

Such dependency on real-world trip information availability is also 

explored in this work.  

This paper started with a motivation and brief review of relevant 

work in the literature. The rest of the manuscript is organized as 

follows: next section provides an overview of the extended 

calibration approach for FASTSim, which involves two parts: i) 

physics-based model, and ii) calibration for real-world trips. The 

section that follows showcases results of the first part (physics-based 

model tuning), with subsequent sections showing an overview of 

real-world trips and utilizing them for calibration. The paper then 

concludes with a summary and brief discussion of future work. 

Approach Overview 

In “baseline” FASTSim [7], powertrain components such as the 

engine and motor have one-dimensional efficiency curves with a pre-

set profile that relates the instantaneous efficiency of the engine or 

motor to its relative power input/output, with the relative power being 

the ratio between instantaneous power and the maximum rated 

power. In other words, a user of baseline FASTSim conducting 

modeling work, may adjust the maximum power of the engine or 

motor, but they do not control the profile of the efficiency curve, 

which is automatically selected by FASTSim based on type of the 

engine (Spark ignition, Atkins, Diesel, …etc.) or maximum power of 

the motor (smaller motors have efficiency curves scaled down 

compared to the default curve utilized in baseline FASTSim). This 

setup of baseline FASTSim is mainly intended for ease of use by the 

general public, yet more advanced users may wish to modify the 

efficiency curves and/or utilize two-dimensional torque-speed 

efficiency maps. The work in the current paper utilizes a Java 

implementation of FASTSim (following closely the code flow of 

Excel and python version of baseline FASTSim [7]) that has been 

contributed and open-sourced by the authors [22]. The Java-

implementation adheres to the default efficiency curves of baseline 

FASTSim, but also permits user input modification of (i.e. use of 

“custom” curves for) the efficiency curves for engine and motor. 

Overview of the overall scheme for calibration and verification of 

FASTSim vehicle models is shown in Fig. 1. First stage of vehicle 

model calibration (bounded by a red rectangle in Fig. 1) is to adjust 

the physical parameters (such as size and weight, tire coefficient, 

maximum power of various components, battery storage capacity and 

state of charge limits, …etc.) as well as the efficiency curves of 

engine and/or motor. The goal for adjusting the physics-based model 

is to match (within reasonable error limits) the observed performance 

of the vehicle under the controlled conditions of dynamometer tests 

that have known results from the EPA. This includes both road-load 

dynamometer coefficients [23], as well as EPA label values [2]. 

 

Figure 1. Overview of the approach for FASTSim vehicle models calibration 
and verification. 

After generating reasonable physics-based models from first stage, a 

second stage (bounded by a blue rectangle in Fig. 1) begins. In the 

second stage, FASTSim simulations of real-world trips, modified by 

three tuning/calibration parameters (T, M, A), are compared to the 

known values for energy and/or fuel consumption of the real-world 

trips, with values of the calibration parameters continuously adjusted 

via an optimization process that aims to minimize the average error 

between FASTSim simulations and the real-world trips. Interested 

readers may refer to [21] for details about the reasoning and 

derivation of the tuning parameters, but for convenience, a brief 

summary of their effect is explained as follows: 

T is a scaling factor (dimensionless) for the vehicle traction power. 

A value of 1.0 for this parameter implies “no adjustment” which 

is usually the favored case during the model calibration process, 

though sometimes a value less/greater than (but still close to) 1.0 

may be used 

M is a correction term to the vehicle mass (in kg), mainly aimed to 

account for things like unknown number of passengers or cargo 

load in the real-world trips 

A is a correction term to auxiliary power (in kW), mainly aimed to 

account for things like unknown HVAC power 

After generating real-world-calibrated FASTSim vehicle models via 

the second stage, the models are checked via another set of real-world 

trips (which we refer to as “Verification trips”) that have not been 

included in the process of optimizing the values of (T, M, A). 

Results for the verification trips are regarded as the metric for 

performance. 
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Physics-Based Model of Vehicles 

Nine vehicle models are considered in this work including three 

BEVs (Bolt, Leaf, Model S), four PHEVs (C-Max Energi, Pacifica 

Hybrid, Prius Prime, Volt), one HEV (Prius) and one conventional 

ICE (CR-V). Results of the first stage of the vehicle models tuning 

(red rectangle in Fig. 1) are shown in Table 1 and Table 2. Custom 

efficiency curves for engine and motor to achieve those results are 

shown in Fig. 2, with full listing of the vehicle modeling parameters 

provided in a publicly accessible shared storage at [24]. In current 

work, we set a target of ±10% error margin for vehicle mass and 

equivalent dynamometer coefficients in the FASTSim model 

compared to EPA test values [23], which was successfully achieved 

for all the considered vehicle models in Table 1. Likewise, we also 

set a target of ±10% error margin for FASTSim simulation of the 

vehicle models’ equivalent EPA label values, compared to the 

standard catalogue label value [2], and this was also successfully 

achieved, as observed in Table 2. We note that the custom efficiency 

curves (Fig. 2) and vehicle physical parameter settings via this 

process [24] may not necessarily be the only, nor necessarily the best 

settings to arrive at such result. However, with the first stage being a 

precursor to calibrating the vehicle models versus real-world trips 

(main focus of this work), we consider these results of the first stage 

sufficient. 

Real-World Driving Data 

Real-world trips data (anonymized to include only speed, road slope, 

HVAC power, energy and fuel consumption) in this study were 

obtained from the eVMT survey [25]. While only a subset of the 

eVMT survey dataset, the analyzed trip data comes several 3-10 

vehicle owners for each of the considered vehicle models, with the 

total number of trips per vehicle model constituting at least several 

hundred, as shown in Fig. 3. Trips from each vehicle model in the 

analyzed data were split via a randomized procedure into a set of 

tuning trips (approx. 85% of trips) that will be used for calibration of 

(T, M, A) values, and a set of verification trips (approx. 15% of 

trips). Aside from showing the split between tuning and verification 

trips, a main purpose of Fig. 3 is to show the variations in energy and 

fuel consumption (as recorded via OBD logging in the eVMT survey 

data) across different owners of same vehicle model, and even across 

different trips by the same owner. This variation is visualized via box 

plots in Fig. 3 for the electric energy intensity (in kWh/mile) for 

BEVs, and gasoline intensity (in gal/mile) for HEV and conventional 

ICE. For PHEVs, whose trips may include both electric energy and 

gasoline consumption, we converted fuel amounts to equivalent 

electric energy at a conversion rate corresponding to the EPA 

combined cycle rating [2] kWh/mile and MPG values.  

In the box plots of Fig. 3, the bottom and top limits of the box 

respectively represent the 25th and 75th percentiles, while the 

horizontal line within the box represents the median value (50th 

percentile). The extension lines respectively represent the 5th and 95th 

percentiles, while the diamond shape marks the non-outlier average 

value (average of the values between the 5th and 95th percentiles). 

Also marked in Fig. 3 (via dotted line) is EPA combined cycle label. 

We observe that individual trips, or the average for individual vehicle 

owners may deviate a lot from the EPA rating, but the average for a 

large number of trips by different owners (diamond shape in the 

darker tone box-plots in Fig. 3) remains within ±15% from the EPA 

combined cycle rating. Though in comparison, tuned FASTSim 

models in [21] (without custom curves) achieved ±4% error margin. 

Table 1. Error margins in vehicle mass and dynamometer coefficients in 
vehicle models 

Vehicle 

Model 

Relative Error [%] for 

Vehicle 

Mass 

Dyno 

Coeff A 

Dyno 

Coeff C 

Bolt +8.8% -8.6% -7.9% 

Leaf +7.3% -2.5% +0.2% 

Model S +0.1% -2.2% +8.8% 

C-Max +4.9% -6.2% +9.6% 

Pacifica +8.5% -2.2% -4.5% 

Prius Prime +6.9% -4.2% +2.2% 

Volt +9.4% +8.1% +2.6% 

Prius +8.3% +6.4% -9.6% 

CR-V +9.5% +7.9% +1.2% 

Table 2. Error margins for standard dynamometer drive cycles simulations of 
the vehicle models compared to EPA label values 

Vehicle 

Model 

Relative Error [%] in 

Electric Intensity 

(kWh/mile) for 

Fuel Economy  

(MPG) for 

City Hwy Comb City Hwy Comb 

Bolt +9.5% +5.8% +8.7%    

Leaf +5.3% +3.7% +3.9%    

Model S +2.4% +9.4% +7.5%    

C-Max   -6.5% -7.9% +6.5% -1.3% 

Pacifica   +0.4% -9.3% +9.0% -2.6% 

Prius Prime   +6.5% -4.5% +9.9% +2.0% 

Volt   -3.0% -9.6% -0.3% -6.6% 

Prius    -8.8% +8.9% +0.1% 

CR-V    -9.9% +4.9% -3.2% 

 

 

Figure 2. Custom efficiency curves for vehicle models.  
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Figure 3. Summary of real-world energy efficiency for vehicle models in current study. 
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Results and Discussion 

We first examine adjusting the three tuning parameters (T, M, A) 

with the objective of getting the average value for relative error in 

trip energy consumption to be within ±0.1% for the tuning set of trips 

(this process corresponds to the blue rectangular boundary in Fig. 1). 

In doing so, we use all the available information (speed, road slope 

and HVAC power) of the real-world trips within the FASTSim 

simulations. The corresponding (T, M, A) values are listed in 

Table 3. Noting however that if the purpose of creating the tuned 

FASTSim vehicle models is to conduct simulations for other real-

world trip datasets (ones that may not have fuel/energy, nor 

slope/HVAC information) such as the travel datasets hosted at 

NREL’s Transportation Secure Data Center (TSDC) [26], then 

another set of (T, M, A) values are needed in order to compensate 

for the unavailable trip information. Those re-adjusted values are 

listed in Table 4 and Table 5 for respectively datasets that include 

slope but not HVAC power, and datasets that include neither slope 

nor HVAC power. We note that the real-world data obtained for 

Model S, Volt, Prius and CR-V did not include HVAC power, and 

thus, the corresponding (T, M, A) values could not be generated in 

Table 4. Error in trip energy FASTSim simulation in the tuning set of 

trips are shown in Fig. 4.b for the appropriately set (T, M, A) 

values. We also explore the effect of inappropriate setting of (T, M, 

A) values in Fig. 4.a, if the tuning parameter values from Table 3 

(and Table 4 for Model S, Volt, Prius and CR-V) were to be used for 

FASTSim simulation of trips that did not include road slope and/or 

HVAC information. 

By examining the box plots in Fig. 4.a, one may gain some insights 

into how real-world trip information interacts with fuel economy 

simulations. In general, a FASTSim vehicle model that is tuned (via 

T, M, A values) to provide the “correct answer” when road slope 

and HVAC are provided to FASTSim (green tone box plots in Fig. 

4.a), will generally underestimate trip energy (pink tone box plots in 

Fig. 4.a) if the simulation used only the trip speed, which would be 

akin to driving on a perfectly flat terrain with no heating/cooling. 

Comparing the average values (diamond marker) of green tone and 

yellow tone box plots in Fig. 4.a implies that the error in trip energy 

estimation due to missing HVAC power information is between 2% 

to 6%. Similarly, comparing the average values of yellow tone and 

pink tone box plots in Fig. 4.a implies that the error in trip energy 

estimation due to missing road slope information is another 2% to 

7%. When utilizing the proper tuning parameter values (Fig. 4.b), the 

average relative error in FASTSim simulations for the tuning trips 

was within ±0.1% when road slope and HVAC power are included in 

the simulated trips data (green tone box plots in Fig. 4.b), within 

±0.4% when road slope is included but not HVAC power (yellow 

tone box plots in Fig. 4.b), and within ±1.2% when neither road slope 

nor HVAC power are included (pink tone box plots in Fig. 4.b).  

To check the capability of tuned FASTSim models for generalization 

however, we examine their performance for the set of verification 

trips, which were not included in the process of tuning the (T, M, 

A) values. The results of this are shown in Fig. 5. We observe that 

the average relative error in trip energy remained within ±1.5% when 

road slope information is included (green and yellow tone box plots 

in Fig. 5), which is an improved result compared to ±4% in previous 

work [21], likely owing to modeling improvements via the custom 

efficiency curves. We also observed that tuned models without road 

slope nor HVAC power (not attempted in previous work) were able 

to achieve average relative error within ±4% (pink tone box plots in 

Fig. 5). Furthermore, aside from the average value for relative error, 

there is a fairly clear improvement in the fidelity of simulation results 

in Fig. 5 (in terms of narrower band between 25th to 75th percentile 

and/or 5th to 95th percentiles) as one observes the pink, yellow and 

green tone box plots for each of the vehicle models (with the 

exception of Pacifica Hybrid, where they are mostly similar). This is 

perceived to attest to the importance of including road slope and 

HVAC power within simulations when such information is available. 

Table 3. Tuning parameter values for real-world trips that include both slope 
and HVAC power information 

Vehicle 

Model 
T M [kg] A [kW] 

Bolt 1.000 40 0.00 

Leaf 1.000 50 0.20 

C-Max 0.965 0 0.00 

Pacifica 1.000 100 0.20 

Prius Prime 0.950 0 0.00 

 

Table 4. Tuning parameter values for real-world trips that include slope but 
not HVAC power information 

Vehicle 

Model 
T M [kg] A [kW] 

Bolt 1.000 150 0.30 

Leaf 1.000 170 0.30 

Model S 1.000 50 0.10 

C-Max 0.970 0 0.00 

Pacifica 1.000 260 0.70 

Prius Prime 0.970 0 0.00 

Volt 1.000 220 1.20 

Prius 0.960 30 0.00 

CR-V 1.000 150 0.50 

 

Table 5. Tuning parameter values for real-world trips that do not include slope 
or HVAC power information 

Vehicle 
Model 

T M [kg] A [kW] 

Bolt 1.000 100 0.50 

Leaf 1.000 210 0.35 

Model S 1.000 100 0.10 

C-Max 0.980 45 0.00 

Pacifica 1.000 475 0.90 

Prius Prime 1.000 50 0.25 

Volt 1.000 300 1.20 

Prius 1.000 50 0.25 

CR-V 1.000 350 0.70 
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Figure 4. Results for FASTSim tuning trips with both HVAC and Road Slope data (green), Road Slope data only (yellow), and neither (red) included (a) using three-
parameter tuning values corresponding to when slope and HVAC information is included, and (b) after re-adjusting the tuning to compensate for the excluded data. 
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Figure 5. Results for FASTSim verification trips with both HVAC and Road Slope data (green), Road Slope data only (yellow), and neither (red) included. 

Conclusion & Future Work 

This paper presented an extension of previous work that aimed at 

improving the fidelity of energy efficiency/fuel economy simulation 

results of FASTSim via a two-stage model tuning process, with the 

first stage focusing on adjusting the physical parameters of vehicle 

model (including custom efficiency curves for engine and motor), 

and the second stage focusing on tuning of energy adjustment 

parameters that aim to account for uncertainties in real-world driving. 

Tuned FASTSim vehicle models were generated for nine light-duty 

vehicles were generated including three BEVs, four PHEVs, one 

HEV and one conventional ICE. Where feasible, up to three variants 

of the tuned models were generated depending on whether the 

available information in the real-world trips to be simulated includes 

only the vehicle speed, speed and road slope, or speed, road slope and 

HVAC power. Verification test simulations of the tuned models 

attained average relative error in trip energy estimation within ±1.5% 

when road slope information is included, and within ±4% when 

neither road slope nor HVAC power information are included. Future 

extensions of this work may include repeating the study on a larger 

scale (more vehicle models, more vehicles and trips per vehicle 

model), and/or consideration for automation procedures for optimal 

tuning of the custom-curves and other tuning parameters. 
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